Pb : Comment expliquer la double spécificité des enzymes ? <u>Activité 1 : Etude expérimentale d'une réaction enzymatique</u>

	Evaluation
B5. Exploiter un modèle, une théorie.	
D2. Utiliser des modes de représentation.	
B2. Traiter des données pour formuler un problème, une hypothèse.	

La **peroxydase** est une enzyme présente dans de très nombreux tissus de presque tous les végétaux. Elle transforme le peroxyde d'hydrogène (H₂O₂), très réactif et donc très dangereux pour les cellules, en eau (H₂O). On veut suivre cette réaction par colorimétrie. On utilise pour cela le gaïacol. Le gaïacol (noté R-H₂) est incolore. Une fois oxydé (noté R), il devient brun :

On place dans la cuve du colorimètre un mélange de gaïacol et de peroxyde d'hydrogène dans une solution tampon à pH = 6,2. Au temps t₀, on injecte 0,5 mL de péroxydase dans la cuve, puis on enregistre l'absorbance de la solution en fonction du temps : **plus la quantité de gaïacol oxydé (brun) augmente**, **plus l'absorbance de la solution augmente**.

On répète la même expérience cinq fois, en changeant seulement la concentration en péroxyde d'hydrogène (substrat de l'enzyme):

Pour chacune des courbes de l'absorbance, on peut mesurer graphiquement une vitesse de la réaction. La vitesse de réaction au temps t est définie comme le coefficient directeur de la tangente à la courbe au temps t.

On cherche à déterminer la vitesse de réaction initiale (Vi) pour chacune des concentrations en substrat

Pour cela, répondez aux questions de la page suivante.

- Q1 Pour chacune des concentrations, déterminez graphiquement Vi :
 - en unité d'absorbance.s⁻¹,
 - en mmol.L⁻¹.s⁻¹, sachant que 1 unité d'absorbance = 17 mmol.L⁻¹.s⁻¹ de gaïacol oxydé formé.
 - Représentez vos résultats dans un tableau.

Q2 - Tracez le graphique présentant l'évolution des vitesses initiales Vi en fonction de la concentration en substrat. **Décrivez** la courbe obtenue.

Q3 - Proposez une hypothèse pour expliquer ce qui se passe quand la concentration en substrat devient très importante.

Activité 2 : Modélisation du complexe enzyme-substrat par le logiciel Rastop

	Evaluation
C4. Utiliser l'outil informatique.	
E1. Faire preuve d'autonomie.	

La **carboxypeptidase** est une enzyme pancréatique sécrétée dans l'intestin grêle. Elle catalyse l'hydrolyse des liaisons peptidiques entre deux acides aminés au sein d'une protéine.

On se propose d'étudier avec précision **l'interaction moléculaire** entre la carboxypeptidase et son substrat. Ce dernier est formé par l'association de deux acides aminés glycine – tyrosine.

1. Affichage des molécules

- Utilisez le logiciel Rastop et travaillez sur les fichiers permettant de visualiser l'enzyme seule (cpaseul.pdb) ou avec son substrat (cpasub.pdb). Représentez les molécules en mode sphères.
- Affichez les molécules dans deux fenêtres côte à côte.
- Colorez les molécules par chaîne de manière à pouvoir distinguer le substrat de l'enzyme.
- Positionnez les molécules de la même manière.
- Q1 Qu'observez-vous ?

2. Détermination des acides aminés impliqués dans l'interaction enzyme-substrat

- On admet que les acides aminés impliqués dans l'interaction avec le substrat se trouvent à une distance du substrat comprise entre 5 et 10 A (1 Angström = 0,1 nm). Affichez ceux situés à une distance inférieure ou égale à 6 A du substrat : dans « Editer → Commande » tapez : « restrict within (6.0, *5) »
- Choisissez la représentation bâtons pour mieux les visualiser.

Q2 - Listez les acides aminés que vous voyez en déplaçant la souris et en lisant l'acide aminé correspondant en bas de l'écran.

3. Comparaison des acides aminés impliqués dans l'interaction de cpa-seule et cpa-sub

- Fermez la fenêtre et réouvrez cpasub dans une nouvelle fenêtre. Colorez par chaîne et utilisez la représentation bâtons, ainsi que pour cpaseul.
- Sélectionnez les acides aminés de l'enzyme vraiment impliqués dans l'interaction avec le substrat (demandez au professeur). Par exemple, si l'on souhaite afficher les acides aminés 2, 6 et 25 de l'enzyme, dans « Editer → Commande », on tape « restrict 2, 6, 25 ». Faîtes ainsi pour les deux molécules.
- Pour cpasub, ajoutez la molécule de substrat en tapant « select *S » puis affichez en représentation sphères.
- Afin de comparer les acides aminés de cpasub et cpa seule, positionnez-les de la même manière.
- Q3 Comparez la forme des acides aminés de cpa seule et cpa-sub.
- Q4 Quels rôles jouent ces acides aminés particuliers ?

<u>**Bilan</u></u> : Justifiez l'emploi du terme « site actif » utilisé pour qualifier le site de l'enzyme en contact avec le substrat.</u>**

FICHE TECHNIQUE D'UTILISATION DE RASTOP

Classe de seconde

Déplacer une molécule

Cliquer à gauche, maintenir et glisser pour la faire tourner.

glisser de droite à gauche, la molécule tourne sur elle-même autour d'un axe vertical.

glisser le curseur de haut en bas, la molécule tourne sur elle-même autour d'un axe horizontal.

Cliquer à droite, maintenir et glisser pour la déplacer.